翻訳と辞書
Words near each other
・ Dax Eric López
・ Dax Griffin
・ Dax Holdren
・ Dax Jones
・ Dax Jordan
・ Dawson Creek Secondary School
・ Dawson Creek Water Aerodrome
・ Dawson Dawson-Walker
・ Dawson Dawson-Watson
・ Dawson Dunbar
・ Dawson Falls
・ Dawson Farm
・ Dawson Farm (aerodrome)
・ Dawson Fernandes
・ Dawson Forest
Dawson function
・ Dawson Harron
・ Dawson Head
・ Dawson High School
・ Dawson High School (Welch, Texas)
・ Dawson Highway
・ Dawson Historic District
・ Dawson Hodgson
・ Dawson Independent School District
・ Dawson Independent School District (Dawson County, Texas)
・ Dawson Independent School District (Navarro County, Texas)
・ Dawson Isla 10
・ Dawson Island
・ Dawson L. Kilgore
・ Dawson Leery


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Dawson function : ウィキペディア英語版
Dawson function

In mathematics, the Dawson function or Dawson integral (named for H. G. Dawson)
is either
:F(x) = D_+(x) = e^ \int_0^x e^\,dt,
also denoted as ''F''(''x'') or ''D''(''x''), or alternatively
:D_-(x) = e^ \int_0^x e^\,dt\!.
The Dawson function is the one-sided Fourier-Laplace sine transform of the Gaussian function,
:D_+(x) = \frac12 \int_0^\infty e^\,\sin\,dt.
It is closely related to the error function erf, as
: D_+(x) = e^ \mathrm (x) = - e^ \mathrm (ix)
where erfi is the imaginary error function, Similarly,
:D_-(x) = \frac e^ \mathrm(x)
in terms of the real error function, erf.
In terms of either erfi or the Faddeeva function ''w''(''z''), the Dawson function can be extended to the entire complex plane:〔Mofreh R. Zaghloul and Ahmed N. Ali, "(Algorithm 916: Computing the Faddeyeva and Voigt Functions )," ''ACM Trans. Math. Soft.'' 38 (2), 15 (2011). Preprint available at (arXiv:1106.0151 ).〕
:F(z) = e^ \mathrm (z) = \frac \left(e^ - w(z) \right ),
which simplifies to
:D_+(x) = F(x) = \frac \operatorname(w(x) )
:D_-(x) = i F(-ix) = -\frac \left(e^ - w(-ix) \right )
for real ''x''.
For |''x''| near zero,
and for |''x''| large,
More specifically, near the origin it has the series expansion
: F(x) = \sum_^ \frac \, x^
= x - \frac x^3 + \frac x^5 - \cdots,
while for large ''x'' it has the asymptotic expansion
: F(x) = \sum_^ \frac}
= \frac + \frac + \frac + \cdots,
where ''n''!! is the double factorial.
''F''(''x'') satisfies the differential equation
: \frac + 2xF=1\,\!
with the initial condition ''F''(0) = 0. Consequently, it has extrema for
: F(x) = \frac,
resulting in ''x'' = ±''0.92413887''… (), ''F''(''x'') = ±''0.54104422''… ().
Inflection points follow for
: F(x) = \frac,
resulting in ''x'' = ±''1.50197526''… (), ''F''(''x'') = ±''0.42768661''… (). (Apart from the trivial inflection point at ''x'' = ''0'', ''F''(''x'') = ''0''.)
== Relation to Hilbert transform of Gaussian ==

The Hilbert Transform of the Gaussian is defined as
: H(y) = \pi^ P.V. \int_^\infty dx
P.V. denotes the Cauchy principal value, and we restrict ourselves to real y. H(y) can be related to the Dawson function as follows. Inside a principal value integral, we can treat 1/u as a generalized function or distribution, and use the Fourier representation
: = \int_0^\infty dk \sin ku = \int_0^\infty dk \Im e^
With u=1/(y-x), we use the exponential representation of \sin(ku) and complete the square with respect to x to find
: \pi H(y) = \Im \int_0^\infty dk \exp() \int_^\infty dx \exp()
We can shift the integral over x to the real axis, and it gives \pi^. Thus
: \pi^ H(y) = \Im \int_0^\infty dk \exp()
We complete the square with respect to k and obtain
: \pi^H(y) = e^ \Im \int_0^\infty dk \exp()
We change variables to u=ik/2+y:
: \pi^H(y) = -2e^ \Im \int_y^ du e^
The integral can be performed as a contour integral around a rectangle in the complex plane. Taking the imaginary part of the result gives
: H(y) = 2\pi^ F(y)
where F(y) is the Dawson function as defined above.
The Hilbert transform of x^e^ is also related to the Dawson function. We see this with the technique of differentiating inside the integral sign. Let
:H_n = \pi^ P.V. \int_^\infty \over y-x} dx
Introduce
:H_a = \pi^ P.V. \int_^\infty dx
The nth derivative is
: = (-1)^n\pi^ P.V. \int_^\infty \over y-x} dx
We thus find
: H_n=(-1)^n |_
The derivatives are performed first, then the result evaluated at a=1. A change of variable also gives H_a=2\pi^F(y\sqrt a). Since F'(y)=1-2yF(y), we can write H_n = P_1(y)+P_2(y)F(y) where P_1 and P_2 are polynomials. For example, H_1=-\pi^y+2\pi^y^2F(y). Alternatively, H_n can be calculated using the recurrence relation (for n \geq 0)
: H_(y) = y^2 H_n(y) - \frac y .

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Dawson function」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.